SH PHY -01 (Model Syllabus)

1st Semester Examination, 2021

Time: 3 hours

Full Marks: 60

Answer from all the Parts as per direction

The figures in the right-hand margin indicate marks

Candidates are required to answer in their own words

as far as practicable

(MATHEMATICAL PHYSICS)

PART - I

1. Answer all the questions:

1 × 8

(a) The equation $y = x^2$ represents a _____

(b)
$$\lim_{x\to 0} \frac{\tan x}{x} = \underline{\hspace{1cm}}$$
.

(c) Order of the differential equation

$$1 + \left(\frac{dy}{dx}\right)^2 = 6y$$

- (d) If $U = e^{x} \sin y, \text{ then } \frac{\partial u}{\partial x} = \underline{\qquad}.$
- (e) If $\vec{A} = \hat{i} + x\hat{j} + 5\hat{k}$ and $\vec{B} = 2\hat{i} + \hat{j} \hat{k}$ are perpendicular, then x = ?
- (f) For any constant 'a' Dirac delta function $\delta(ax) = ?$
- (g) For any vector \vec{A} to be Solenoidal, $div \vec{A} = ----$.
- (h) $\iiint_{V} \vec{\nabla} \cdot \vec{F} \cdot dv = -----$

PART - II

- 2. Answer any eight of the following: $1\frac{1}{2} \times 8$
 - (a) Plot the graph y = 3x + c.
 - (b) Find $\lim_{x\to 0} \frac{(1-x^2)}{x}$.

SH PHY -01(Model Syllabus)

- (c) Find the general solution of the differential equation $\frac{d^2y}{dx^2} + 5y = 0$.
- (d) Give the example of two linearly independent functions.
- (e) Write the condition of continuity of a function.
- (f) Solve $ydx xdy = xy^3dy$.
- (g) Give the example of two orthogonal vectors.
- (h) What are the co-ordinates in plane-polar coordinates and Draw it.
- (i) What is the physical meaning of curl of a vector.
- (j) Give the example where Gauss divergence theorem can be applied.

PART - III

3. Answer any eight of the following: 2×8

SH PHY -01(Model Syllabus)

(Turn Over)

(a) Find

$$\lim_{x\to 0} \frac{x^2 + 5x}{x}.$$

- (b) Find $\frac{dy}{dx}$, if $x = a(t + \sin t)$, $y = a \cos t$.
- (c) Give the example of a homogenous differential equation. Why it is called so?
- (d) Solve the differential equation

$$x\frac{dy}{dx} + y = x^5 + x.$$

- (e) Define Wronskian. Give an example.
- (f) Solve the equation $\frac{d^2y}{dx^2} 3\frac{dy}{dx} + 2y = e^{3x}.$
- (g) Evaluate $\lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy}{x^2 + y^2}$.
- (h) Give the Geometrical interpretation of divergence of a function with an example.

SH PHY -01 (Model Syllabus)

- Define Dirac Delta function. Give one application.
- (f) State Green's theorem. Give one application.

PART - IV

Answer all questions:

 6×4

4. Draw the graph $y = \sin^{-1} \left(\frac{1 - x^2}{1 + x^2} \right)$ and check the continuity and differentiability of the function.

Or

Solve the differential equation

$$\frac{d^2x}{dt^2} - 2\frac{dx}{dt} - 3x = \cos t.$$

5. If
$$U = \frac{y}{z} - \frac{z}{x}$$
, then find
$$x \frac{\partial u}{\partial x} - y \frac{\partial u}{\partial y} - z \frac{\partial u}{\partial z}.$$

SH PHY -01(Model Syllabus)

(Turn Over)

Or

Find the expression for vector tripple product. Give an physical example.

 Find the expression for velocity in general orthogonal curvilinear co-ordinates. Reduce it to Cartesian Co-ordinates.

Or

Discuss characteristics of a Dirac delta function with physical application.

7. Show that, for two Scalar functions 'f' and 'g' $\nabla f \times \nabla g$ is solenoidal.

Or

State and prove Stoke's theorem.

SH PHY -02 (Model Syllabus)

1st Semester Examination, 2021

Time: 3 hours

Full Marks: 60

Answer from all the Parts as per direction

The figures in the right-hand margin indicate marks

Candidates are required to answer in their own words

as far as practicable

(MECHANIC)

PART - I

(a) What is reduced mass of a two body system

1. Answer all questions:

having mass m₁ and m₂?

(b) Moment of inertia is analogous quantity of ____ in linear motion.

(c) What is the theoritical limit of poisson's ratio?

(Turn Over)

1 × 8

- (d) Write the relation between gravitational field and potential.
- (e) For a stream line flow Reynold number is _____.
- (f) Time period of a geo-synchronous satellite is _____.
- (g) At V = C, time in special theory of relativity is _____.
- (h) Einsteins mass energy relation is _____.

PART - II

- 2. Answer any eight of the following questions: $1\frac{1}{2} \times 8$
 - (a) Define moment of inertia of a body and give its mathematical formula for a continuous system.
 - (b) State the 'principle of conservation of angular momentum.
 - (c) What is Coriolis force?
 - (d) Give one application of youngs modulus.

SH PHY -02(Model Syllabus)

- (e) How the excess pressure inside a Soap bubble changes with surface tension.
- (f) How the 4-field due to a thin spherical charges with radius.
- (g) Give one application of a Geo-Synchronous satellite.
 - (h) What is damped oscillation?
 - (i) How time changes in Gulilean transformation?
 - (j) What is the postulate of constancy of speed of light in special theory of relativity?

PART - III

3. Answer any eight of the following:

- 2×8
- (a) With a suitable example explain perpendicular axis theorem of moment of inertia.
- (b) State and explain Routh rule.
- (c) Give an example to explain Coriolis force.

SH PHY -02(Model Syllabus)

(Turn Over)

- (d) From the relation between elastic constants estimate practical value of Poisson's ratio.
- (e) Show that steel is more elastic than rubber.
- (f) State and explain poiseuille's formula.
- (g) What are gravity waves?
- (h) Calculate the radius of the orbit of a Geo-Synchronous satellite.
- (i) Explain the condition of resonance.
- (i) Explain time dilation with an example.

PART - IV

Answer all questions:

6 × 4

 Derive an expression for moment of inertia of a solid sphere about one of its diameters.

Or

What is a non-inertial frame of reference.

Calculate the force in that frame.

SH PHY - 02(Model Syllabus)

Find the expression for bending moment of a light cantilever loaded at one end.

Or

Derive poiseuille's formula for flow of a viscous liquid with end correction.

 What is central force? Discuss the motion of a particle in a central force field.

Or

Find the expression for gravitational field on the surface of a solid sphere.

What is damped oscillation? Find the condition of resonance.

Or

With Lorentz transformation equations, discuss length contraction.