1st Semester Examination, 2020

Time: 3 hours

Full Marks: 60

Answer any **one** Group as per your Syllabus.

Answer from all the sections as per direction.

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP—A (MODEL SYLLABUS) (MATHEMATICAL PHYSICS-I)

SECTION-A

1. Answer *all* questions:

 1×8

- (a) y = x is a straight line of slope ——.
- $(b) \lim_{x\to 0}\frac{\sin x}{x} = ---.$
- (c) Order of the differential equation $\frac{d^2y}{dx^2} + 6y = 2x$, is _____.
- (d) If $U = e^x \cos y$, then $\frac{\partial u}{\partial x} = ----$.
- (e) Angle between the two meters $\vec{A} = 2\hat{i} + 3\hat{j} 4\hat{k}$ and $\vec{B} = 5\hat{i} + 2\hat{j} + 4\hat{k}$ is ——.
- (f) For any constant a and dirac delta function $\delta(x) \frac{\delta(-x)}{a} = ---$.
- (g) Divergence of a solenoidal vector is ——.

(h)
$$\iint_{S} \vec{F} \cdot \hat{n} ds = \underline{\qquad}.$$

SH PHY 01 (1) (Turn Over)

SECTION-B

2. Answer any *eight* of the following:

 1.5×8

- (a) Plot the graph $y = x^2$.
- (b) Find $\lim_{x\to 0} \frac{\left(\sqrt{1-x}\right)-1}{x}$.
- (c) Find the general solution of the differential equation $ax \frac{dy}{dx} = by$.
- (d) Show that the function e^{ax} and e^{-ax} and linearly independent.
- (e) Check the continuity of the function $f(x, y) = x^2 + 2y$, at (1, 2).
- (f) Solve, $ydx xdy = xy^3dy$.
- (g) Justify the statement 'If three vectors are co-planar, then the value of the scalar tripple product is zero'.
- (h) Draw and define cylindrical co-ordinates.
- (i) Show that grad $(\phi + \psi) = \text{grad } \phi + \text{grad } \psi$.
- (j) Show that $\int_C \vec{r} \cdot d\vec{r} = 0$.

SECTION-C

3. Answer any *eight* of the following:

 2×8

- (a) Find $\lim_{x\to 0} \frac{x^2 + 8x}{x}$.
- (b) Find $\frac{dy}{dx}$, if $x = a(t + \sin t)$, $y = a \cos t$.
- (c) With a suitable example define a homogeneous differential equation of degree n.
- (d) Solve the differential equation $x \frac{dy}{dx} + y = x^3 + x$.

- (e) What is wronskian? What is its application?
- (f) Solve the differential equation $\frac{d^2y}{dx^2} 3\frac{dy}{dx} + 2y = e^{3x}$.
- (g) Evaluate $\lim_{\substack{x\to 0\\y\to 0}} \frac{xy}{x^2+y^2}$.
- (h) What is the geometrical interpretation of gradient of a function.
- (i) For dirac delta function show that

$$f(x) \delta(n-a) = f(a) \delta(x-a)$$

(j) Using Green's theorem show that area of a plane region

$$A = \frac{1}{2} \oint_C (xdy - ydx)$$

SECTION-D

Answer *all* questions:

4. Draw the graph $y = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$ and check the continuity and differentiability of the function.

Or

Solve the differential equation
$$\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + 3x = \sin t$$
.

5. If
$$U = \frac{y}{z} + \frac{z}{x}$$
, then find $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z}$.

Or

For unit vectors \hat{i} , \hat{j} & \hat{k} and for any vector \vec{A} find

$$\hat{i} \times (\vec{A} \times \hat{i}) + \hat{j} \times (\vec{A} \times \hat{j}) + \hat{k} \times (\vec{A} \times \hat{k})$$

6

6

6. Find the expression for velocity in spherical polar coordinates.

Or

Discuss the properties of Dirac delta function.

7. Justify the statement for two scalar function f and g, $\nabla f \times \nabla g$ is solenoidal. 6 OrState and prove Stoke's theorem. 6 **GROUP—B** (OLD SYLLABUS) (MATHEMATICAL PHYSICS-I) SECTION-A 2×6 1. Answer *all* questions: (a) Define vector triple product. (b) Find the gradient of scalar function $\phi(xy) = x^2 - y^2$. (c) Explain Lagrange method of undetermined multipliers. (d) Prove that $\delta(-x) = \delta(x)$. (e) Write relation between unit vectors $(\hat{r}, \hat{\theta})$ and (\hat{i}, \hat{j}) . (f) State Green's theorem. SECTION-B 12×4 Answer *all* questions: **2.** (a) Explain scalar triple product with its physical significance and features. 10 2 (b) Distinguish between scalar field and vector field. Or(a) Explain divergence of a vector field and its physical significance with examples. 10 (b) Calculate the divergence of the vector $\vec{A} = xy\hat{i} + yz\hat{j} + zx\hat{k}$. 2

- **3.** (a) Derive an expression for partial differentiation of vectors.
 - (b) Solve the differential equation $(1+x^2)dy (1+y^2)dx = 0$.

10

2

Or

- (a) Derive relation of Delta function with the step function.
- (b) Prove that $x \cdot \delta(x) = 0$.
- (c) Prove that $f(x) \cdot \delta(x-a) = f(a) \cdot \delta(x-a)$.
- **4.** Find the divergence and curl in terms of orthogonal curvilinear coordinates. 6+6

Or

Derive an expression for velocity and acceleration in cylindrical and spherical polar coordinates in three dimension.

6+6

5. State and prove Gauss divergence theorem with its physical significance.

Or

Explain line integral, surface integral and volume integral of a vector function.

4+4+4

1st Semester Examination, 2020

Time: 3 hours

Full Marks: 60

Answer any one Group as per your Syllabus.

Answer from all the sections as per direction.

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP—A (MODEL SYLLABUS) (MECHANICS)

SECTION-A

1	Answer <i>all</i> questions:	× 8
1.	(a) Position vector of C.M in Laboratory frame of a two particle system of mass 1 kg and 2 kg having position vector 1 m and 2 m respectively is ——?	. ~ 0
	(b) Moment of inertia of flywheel can be measured using the principle ——.	
	(c) For an incompressible substance the value of poissons ratio is ——.	
	(d) Gravitational field at an internal point of a solid sphere ——with distance.	
	(e) Bar pendulum is ——pendulum.	
	(f) For a stream line flow Reynold number is ——.	
	(g) Orbital velocity of a sattelite moving very close to earth is ——.	
	(h) Lorentz transformation equations reduces to Galilean transformation equation for ——.	
	SECTION-B	
2.	Answer any <i>eight</i> of the following:	5×8
	(a) Define radius of gyration.	Α 3
SH	I PHY 02 (1) (<i>Turn O</i>	ver)

- (b) State principle of conservation of angular momentum.
- (c) Justify the statement Erosion of Reverbanks is due to coriolis force.
- (d) Why a hollow shaft is stronger than solid one.
- (e) How the excess pressure in a soap bubble changes by doubling the radius?
- (f) Establish a relation between gravitational field and potential.
- (g) How the time period of revolution of a planet changes by doubling its orbital radius.
- (h) Explain weightlessness inside a satellite.
- (i) Define relaxation time in damped oscillation.
- (j) State Einsteins mass energy relation and explain.

SECTION-C

3. Answer any *eight* questions :

 2×8

- (a) With a suitable example, explain parallel axis theorem of moment of inertia.
- (b) State and explain Routh rule.
- (c) Explain Coriolis force with an example.
- (d) From the basic relation calculate theoretical limiting value of Poissons ratio.
- (e) Find the work done in elongating a wire.
- (f) What are the limitations of Poiseuille's formula for viscosity and the corrections.
- (g) Explain gravity waves with example.
- (h) Calculate the height of a geo-synchronous orbit.
- (i) What is Q-factor of forced oscillators? What is its value in low damped condition?
- (j) Calculate the length contraction when a meter rod is moving with 0.8 C with respect to a rest frame.

SECTION-D

Answer all questions:

4. Derive an expression for moment of inertia of a solid cylinder about an axis passing through its axis.

Or

Find the expression for coriolis force considering a uniformly rotating frame of reference.

5. Find the expression for bending moment and depression at the free end of a light cantilever.

Or

Derive Poiseuille's formula for velocity of flow of a viscous liquid in a narrow tube.

6. Establish Kepler's laws of planetary motion by considering equation of orbit in central force motion.

Or

Derive expression for gravitational potential and field at an external point of a solid sphere.

7. From the desired equation, discuss case of overdamped, underdamped and critically damped condition.

Or

With Lorentz transformation equations explain time dilation.

GROUP—B (OLD SYLLABUS) (MECHANICS)

SECTION-A

1. Answer *all* questions:

 2×6

6

6

- (a) Find relation between torque and angular momentum.
- (b) Define coefficient of elasticity and write its S.I unit.
- (c) Explain Weightlessness.

	(e) Write Lorentz Transformation equations.	
	(f) Distinguish between inertial mass and gravitational mass.	
	SECTION–B Answer <i>all</i> questions: 12	2×4
2.	(a) State parallel and perpendicular axes theorem of Moment of Inertia.	4
	(b) Derive an expression for Moment of Inertia of a solid sphere rotating about an axis passing through its diameter.	8
	Or	
	Explain the physical significance of fictitious force and prove that coriolis force and centrifugal force are consequence of rotation of frame of reference.	12
3.	(a) Explain beam, bending moment and cantilever.	6
	(b) Derive an expression for the depression of the loaded end of a cantilever of circular cross section.	6
	Or	
	Derive an expression for Poiseuille's formula for liquid flowing through a capillary tube. Also discuss about the corrections to Poiseuille's formula.	12
4.	Define gravitational field and gravitational potential. Then derive an expression for gravitational potential and field due to a spherical shell at points	
	(i) Outside the surface	
	(ii) On the surface	
	(iii)Inside the shell	12
	Or	
	Explain central force field. Then derive an expression for two body problem and its reduction to one body problem. Also find its solution.	2+10

(d) Explain sharpness of Resonance.

5.	Define simple Harmonic Motion with some examples. Then derive an expression for total energy of a particle executing S.H.M with graphical representation.	4+8
	Or	
	(a) Using Lorentz transformation equation derive an expression for Relativistic addition of velocities.	6
	(b) Explain Energy-Momentum four vector	4
	(c) Two photons approach each other, what is their relative velocity.	2

(5) SH PHY 02 BA-