Total Pages-7 SH PHY - 01 (MODEL CBCS)

2019

(1st Semester)

Time: 3 hours

Full Marks: 60

Answer all the Parts as per the direction

The figures in the right-hand margin indicate marks

Candidates are required to answer in their own words

as far as practicable

(MATHEMATICAL PHYSICS-I)

PART - I

1. Answer all questions:

1 × 8

(a) The order of the differential equation

$$\frac{d^2x}{dt^2} + w^2x = 0 \text{ is } \underline{\hspace{1cm}}$$

(b) The solution of the differential equation ydx + xdy = 0 is _____.

(Turn Over)

(c)
$$\vec{a} \cdot (\vec{a} \times \vec{b}) = \underline{\hspace{1cm}}$$
.

- (d) What is the volume of the rectangular parallelopiped with sides representing vectors $\vec{a} = (2m)\hat{i}$, $\vec{b} = (3m)\hat{j}$ and $\vec{c} = (1m)\hat{k}$?
- (e) Expression for $\nabla \cdot \vec{A}$ in orthogonal curvilinear coordinate is _____.

(f)
$$\delta(\alpha x) = \underline{} \delta(x)$$
.

- (g) In spherical polar coordinates $\vec{\nabla} =$ _____
- (h) Curl of a scalar (f) times a vector \vec{a} is $\nabla \times (f \vec{a}) = \underline{\hspace{1cm}}$ PART II
- 2. Answer any eight questions: $1\frac{1}{2} \times 8$
 - (a) Find the solution of the first order linear differential equation

$$\frac{dy}{dx} + P(x)y = Q(x).$$

SH PHY - 01(MODEL CBCS)

(Continued)

-(b) Solve the differential equation

$$x\frac{dy}{dx} + y = x^3 + x$$

- (c) Define Wornskian of a function.
- (d) Find the first order partial derivatives of $u = e^x \sin y$.
- (e) Find the unit vector perpendicular to each of the vectors

$$\vec{A} = 2\hat{i} - \hat{j} + \hat{k}$$
 and $\vec{B} = 3\hat{i} + 4\hat{j} - \hat{k}$

(f) Find the angle between the two vectors

$$(2\hat{i}+2\hat{j}+3\hat{k})$$
 and $(6\hat{i}-3\hat{j}+2\hat{k})$.

- (g) Find the unit normal to the surface $xy^3z^2 = 4$ at (-1, -2, 2).
- (h) Show that

$$\tau \delta(x) = 0.$$

SH PHY - 01(MODEL CBCS)

(Turn Over)

(i) Evaluate

$$\int_{x=0}^{1} \int_{y=0}^{2} \left(x^2 + 3xy^2\right) dx dy.$$

(j) Show that position vector \vec{r} is irrotational.

3. Answer any eight questions:

 2×8

- (a) Solve the given differential equation $(x^2 + v^2)dx 2xydy = 0.$
- (b) If $u = \log(x^3 + y^3 + z^3 3xyz)$ then prove that $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = \frac{-9}{(x+y+z)^2}$
- (c) Check whether the following functions are linearly independent or not:

$$e^x \cos x$$
, $e^x \sin x$.

(d) If u = (y - z)(z - x)(x - y) then show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$

SH PHY - 01(MODEL CBCS)

(Continued)

- (e) Show that the Dirac delta function can be represented as limit of Gaussian function.
- (f) Prove that

$$\vec{A} = 3y^2z^2\hat{i} + 3x^2z^2\hat{j} + 3x^2y^2\hat{k}$$

is a solenoidal vector

- (g) Derive an expression for velocity in spherical polar coordinates.
- (h) Prove that the vectors $2\hat{i} \hat{j} + \hat{k}$, $\hat{i} + 2\hat{j} + 2\hat{k}$ and $3\hat{i} - 4\hat{j} + 5\hat{k}$ are coplanar.
- (i) If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, show that $\nabla r = \vec{r}/r$.
- (j) If $u = \frac{x+y}{1-xy}$, $V = \tan^{-1} x + \tan^{-1} y$, find the value of $\frac{\partial(u,v)}{\partial(x,y)}$.

PART - IV

Answer all questions:

 6×4

SH PHY - 01(MODEL CBCS)

(Turn Over)

4. (a) Solve the equation

$$(8y-x^2y)\frac{dy}{dx}+(x-xy^2)=0.$$
 6

Or

- (b) If $y_1 = e^{-x}\cos x$, $y_2 = e^{-x}\sin x$ and $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 2y = 0$ then
 - (i) Calculate Wornskian determinant. 3
 - (ii) Verify that y₁ and y₂ satisfy the given differential equation.
- 5. (a) Find the minimum value of $x^2 + y^2 + z^2$ subject to the condition $xyz = a^3$.

Or

- (b) Define scalar tripple product. Explain scalar tripple product with its physical significance and features.
- 6. (a) Find the curl in terms of orthogonal curvilinear coordinates.

SH PHY - 01(MODEL CBCS)

(Continued)

Or

- (b) Derive an expression for velocity and acceleration in cylindrical coordinates.
- 7. (a) Find the directional derivative of $\frac{1}{r}$ in the direction $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$.

Or

(b) State Gauss divergence theorem. Evaluate

$$\iint_{S} \vec{F} \cdot \hat{n} dS$$

where $\vec{F} = 4xz\hat{i} - y^2\hat{j} + yz\hat{k}$ and S is the surface of the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.